Chemical Synthesis of Glycosylated Peptides and Proteins Improves Drug Properties

Life Sciences, Drug Discovery & Development, Fundamental Research,
  • Wednesday, December 02, 2015

solutionBioactive peptides have high biological activity, but generally have low stability in plasma, are sensitive to proteases, and can be cleared from the circulation in minutes. Glycosylation is often required for optimal biologic bioactivity, especially for protein therapeutics. Selective glycosylation has the potential to improve drug potency through such effects as enhanced receptor selectivity or prolonged half-life. For example, Amgen’s Aranesp® has a three-fold longer half-life than its Epogen®, since it has 5 N-linked oligosaccharide chains compared to 3 for Epogen, permitting less frequent, more convenient dosing. Conventional mammalion, CHO-based cell culture is typically utilized to manufacture biologics that require glycosylation, but it yields heterogeneously-glycosylated species and is complex and expensive. Chemical synthesis of proteins, such as via solid-phase or solution-phase synthesis, can be used to manufacture non-glycosylated peptides and other small proteins, but has been unable to generate glycosylated peptides and proteins.

GlyTech has established a scalable manufacturing process for human type N-glycans and succeeded in producing several kilograms of common N-glycan structures per year. Using these N-glycans, they have found that glycosylation can be applied to peptides to improve their physicochemical properties. These glycosylation technologies enable them to add several glycans to specific positions in the target peptides and proteins, so they are able to tailor their PK profiles, solubility, etc., for improved drug development. These chemically synthesized glycopeptides and glycoproteins have a single glycoform and are homogeneous, unlike CHO-produced versions. In addition, the human type N-glycans are biodegradable and considered to be less toxic because of their nature. Therefore chemical glycosylation is potential technology for generating promising novel peptide and protein drugs.

This presentation will describe a method for manufacturing glycosylated peptides and proteins via chemical synthesis. As an example glycopeptide, GlyTech has created several glycosylated GLP-1 analogs. Their optimized GLP-1 analogs had potent efficacy and good plasma stability and pharmacokinetics in mice. They also have chemically glycosylated somatostatin analogues and shown markedly improved binding selectivity and half life versus marketed therapeutics. Thus, GlyTech has demonstrated that glycosylating bioactive peptides can be useful to optimize their PK/PD and other properties.

For larger peptides, which are commonly called proteins, Bachem and GlyTech have selected interferon-beta 1a as an example glycoprotein that they produced synthetically. Interferon-beta 1a (INF-beta-1a) is a glycosylated 166 amino acid protein with an approximate molecular weight of 22.5 kD. It is currently approved and widely used for the treatment of multiple sclerosis, and also has oncologic activity. Commercial INF-beta-1a is produced by mammalian cell culture and is a mixture of at least 10 glycoforms. We describe a method for manufacturing selectively-glycosylated INF-beta-1a via a synthetic, chemical route. In this method, the protein structure of INF-beta 1a was analyzed to determine optimal glycosylation points, glycan number, and glycan structure. Three fragments of the protein were selected for manufacturing, one of which was glycosylated. These fragments were ligated to form the final product. Each fragment synthesis was optimized and scaled up. Purification of the final product yielded a monodisperse and well-characterized product. Comparison to commercially-available INF-beta 1a demonstrated that the synthesized INF-beta 1a had one glycoform, whereas the commercial product had more than 10. In vitro bioactivity assays showed that synthesized INF-beta 1a had markedly increased bioactivity compared to commercial INF-beta 1a. Additionally, in animal models the terminal half-life of synthesized INF-beta 1a was about 2.5 times longer than commercial INF-beta 1a. Finally, the AUC of subcutaneous administration of synthesized INF-beta 1a in rats was substantially increased over that of commercial INF-beta 1a. Taken together, this optimized, fully-synthetic INF-beta 1a demonstrated numerous advantages over commercial IFN-beta 1a.

In conclusion, this presentation will demonstrate that optimizing glycosylated peptides’ and proteins’ physicochemical properties by a fully-synthetic manufacturing route is possible and that these optimized molecules can possess improved biologic activity. This technology for chemically synthesizing glycosylated peptides and proteins could be widely applicable to generate novel drugs.


Michael F. Haller, Ph.D., Board Advisor, GlyTech, Inc.

Dr. Haller is a Board Advisor to GlyTech. Additionally he is Chief Business Offer at Peloton Therapeutics and a Board Director at Denovo Biomarkers. Previously, Dr. Haller was VP, Business Development and Alliance Management at Ligand Pharmaceuticals and Senior VP, Strategic Partnerships at Anaphore. He joined Anaphore from Halozyme Therapeutics, where as VP of Alliance Management and Head, Drug Delivery Franchise, he helped grow Halozyme to $1B market cap through key partnerships with Roche and Baxter Healthcare. Dr. Haller has been a McKinsey & Company management consultant focusing on complex health care issues for Fortune 500 companies. Dr. Haller has published several peer-reviewed articles, presented at numerous scientific conferences, and is co-inventor on multiple patents. Dr. Haller earned his Ph.D. in Biomedical Engineering from The Johns Hopkins University School of Medicine, his M.S. in Chemical Engineering from Cornell University and his B.S. in Biomedical Engineering from The Johns Hopkins University.

Message Presenter

Who Should Attend?

  • VP & Directors of Research & Development
  • Research Associates
  • Research Scientists
  • Scientific Advisors
  • Chemists
  • Head/Directors of Peptide Discovery & Peptide Chemistry

Xtalks Partner


Bachem is a listed technology-based company focused on peptide chemistry. The company provides a full range of services to the pharma and biotech industries. It specializes in the development of innovative, efficient manufacturing processes and the reliable production of peptide-based active Pharmaceutical ingredients. A comprehensive catalog of biochemicals and exclusive custom syntheses for research labs complete the service portfolio. Headquartered in Switzerland with subsidiaries in Europe and the US, the group has a global reach with more experience and know-how than any other company in the industry. Towards its customers, Bachem shows total commitment to quality, innovation and partnership.

Bachem. Pioneering Partner for Peptides.

Media Partner

You Must Login To Register for this Free Webinar

Already have an account? LOGIN HERE. If you don’t have an account you need to create a free account.

Create Account